In a test of the reliability of products produced by two machines, machine A produced 15 defective parts in a run of 280, while machine B produced 10 defective parts in a run of 200. Do these results imply a difference in the reliability of these two machines? (Use $\alpha = 0.01$.)

1. Enter the group values (Machine: 1=Machine A, 2=Machine B) into one variable, the quality values (Quality: 1=Defective, 2=Acceptable) into another variable, and the observed counts into a third variable (*see left figure, below*). Then weight the category variables (Machine, Quality) by the observed counts variable (*see two right figures, below*).

	View	Data Transform Analyze Graphs U	Ū	
	B, [Define Variable Properties		
		Copy Data Properties	-	
		New Custom Attribute		
	ma	Define Dates		
	Ma	Define Multiple Response Sets	1	
	Ma	Identify Duplicate Cases	Weight Cases	X
machine quality count	Ma	Sort Cases		
1 Machine A Defective 15	IVId	Transpose	Machine [machine] Do not weight cases	OK
2 Machine & Accontable 265		Restructure	Guainy [quainy] O Weight cases by	Paste
2 Machine A Acceptable 200		Merge Files 🕨 🕨	Frequency Variable:	Baud
3 Machine B Defective 10		Aggregate	Count [count]	
4 Machine B Acceptable 190		-		Cancel
		Copy Dataset	Current Status: Do not weight cases	Help
		Split File		
		Select Cases	-	
		Weight Cases	-	

- 2. Select Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs... (see top-left figure, below).
- 3. Select "Machine" as the row variable and "Quality" as the column variable. Click the "Statistics..." button and be sure that "Chi-square" is selected (*see bottom figure, below*). Click "Continue" to close the "Statistics..." window, and then click "OK" to perform the analysis (*see top-right figure, below*).

4. Your output should look like this.

5. You should use the output information in the following manner to answer the question.

<u>Step 0</u> :	Check Assumptions									
	$n_A p_A = y_A = 15 \ge 10$ and $n_A (1 - p_A)$	$= n_A - y_A = 2$	65≥1	0						
	$n_B p_B = y_B = 10 \ge 10$ and $n_B (1 - p_B)$	$= n_B - y_B = 19$	90≥1	0						
Step 1	Hypotheses			Chi-Square Tests						
<u>otop 1</u> .	$H_0: \pi_A - \pi_B = 0$	Pearson Chi-Square	Value	• •df •	Asymp. Sig. (2-sided)	Exact Sig. (2-stdet)	Exact Sig. ¶1 eided			
	$H_a: \pi_A - \pi_B \neq 0$	Centeruity Correction Likelihood Ratio	.0001 .000		1.000	• • • •	• • • •	• •		
<u>Step 2</u> :	Significance Level	Fisher's Exact Test Linear-by-Linear Association	.030	1	.862	1.000	.518			
	$\alpha = 0.01$	N of Valid Cases	480]		
<u>Step 3</u> :	Rejection Region	 computed only to b. 0 cells (.0%) have 	r a 2x2 table expected cou	int less than 5.	. The minimum	expected cou	ıntis 10.			
	Reject the null hypothesis if p -value ≤ 0.05	5. 42.								
Step 4:	Test Statistic									
	$Z = \sqrt{\text{Pearson Chi-Square}} = \sqrt{0.0301} =$	= 0.1735								
	(Z has the same sign as $(p_{\scriptscriptstyle A} - p_{\scriptscriptstyle B}) = rac{15}{28}$	$\frac{5}{80} - \frac{10}{200} = 0.003$	57)							
	<i>p</i> -value = Asymp. Sig. (2-tailed) = 0.8622	1				_				
	[If the test were one-tailed, the <i>p</i> -value	would be $\frac{1}{2}$ (As	ymp. S	Sig. (2-	tailed))	.]				
Step 5:	Conclusion									
	Since <i>p</i> -value = $0.8622 > 0.01 = \alpha$, we fail	to reject the nu	ıll hypo	othesis						
<u>Step 6</u> :	State conclusion in words									
	At the α = 0.01 level of significance, there is not enough evidence to conclude that there									
	is a difference in the reliability of the two machines									
	is a amereneo in the reliability of the two h									