Three sets of five mice were randomly selected to be placed in a standard maze but with different color doors. The response is the time required to complete the maze as seen below. Perform the appropriate analysis to test if there is an effect due to door color. (Use $\alpha=0.01$)

Color	9	Time			
Red	9	11	10	9	15
Green	20	21	23	17	30
Black	6	5	8	14	7

1. Enter the group number (1 for Red, 2 for Green, 3 for Black) into one variable and the corresponding time values into another variable (see upper-right figure, below). Be sure to code your variables appropriately. Now it is time to check the normality assumption. Select "Split File" from the "Data" menu so that we can tell SPSS that we want separate Q-Q Plots for each group (see upper-right figure, below). Select "Organize output by groups" and enter "color" as the variable that groups are based upon (see lower-left figure, below). Now create Normal Q-Q Plots to assess the normality of each group (see separate handout on Normal $Q-Q$ Plots). Once you've created your $\mathrm{Q}-\mathrm{Q}$ Plots and determined that your groups are approximately normally distributed, select "Split File" from the "Data" menu and then select "Analyze all cases, do not create groups" in order to return SPSS to its normal data analysis mode (see lower-right figure, below).

	color	time
1	Red	9
2	Red	11
3	Red	10
4	Red	9
5	Red	15
6	Green	20
7	Green	21
8	Green	23
9	Green	17
10	Green	30
11	Black	6
12	Black	5
13	Black	8
14	Black	14
15	Black	7

2. Select Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA... (see figure, below).

3. Select "Maze Time" as the dependent test variable, select "Door Color" as the grouping factor, and click "Post Hoc...". Select the "Tukey" procedure, enter 0.01 for the significance level (99% CI corresponds to a 1% (0.01) significance level) to obtain the 99% Tukey-Kramer multiple comparison confidence intervals and grouping diagram, and click "Continue". Click the "Options..." button and select "Homogeneity-of-Variance" (Levene's Test checks the assumption of equal variances). Click "Continue" to close the options and then click "OK" (see the 3 figures, below).

One-Way ANOVA: Options	X
Statistics	Continue
\square Descriptive	Cancel
\square Fixed and random effects	Help
\square Homogeneity of variance test	
\square Brown-Forsythe	
\square Welch	
\square Means plot	
Missing Values	
Exclude cases analysis by analysis	

4. Your output should look like this.

Oneway

Test of Homogeneity of Variances

Maze Time
$\begin{array}{c}\text { Levene } \\ \text { Statistic }\end{array}$ df1 df2 Sig. .6522 2 12$) .5384$

ANOVA
Maze Time

		Sum of			
Between Groups	df	Squares	Mean Square	F	Sig.
Within Groups	2	565.7333	282.8667	20.0142	.0002
Total	12	169.6000	14.1333		

Post Hoc Tests

Multiple Comparisons

Dependent Variable: Maze Time
Tukey HSD

(1) Door Color	(J) Door Color	$\begin{gathered} \text { Mean } \\ \text { Difference } \\ (1-J) \end{gathered}$	Std. Error	Sig.	99\% Confidence Interval	
					Lower Bound	Upper Bound
Red	Green	-11.4000**	2.3777	. 0012	-19.8836	-2.9164
	Black	2.8000	2.3777	4879	-5.6836	11.2836
Green	Red	11.4000^{*}	2.3777	. 0012	2.9164	19.8836
	Black	14.2000**	2.3777	. 0002	5.7164	22.6836
Black	Red	-2.8000	2.3777	4879	-11.2836	5.6836
	Green	-14.2000**	2.3777	. 0002	-22.6836	-5.7164

*. The mean difference is significant at the .01 level.

Homogeneous Subsets

Maze Time

Door Color	N	Subset for alpha = . 01	
		1	2
Black	5	8.0000	
Rod	5	10.8000	
Green	5		22.2000
Sig.		. 4879	1.0000

[^0]5. You should use the output information in the following manner to answer the question.

From the output, $F=20.0142$ with 2 and 12 degrees of freedom.
p-value $=$ Sig. $=0.0002$
Step 5: Conclusion
Since p-value $=0.0002 \leq 0.01=\alpha$, we shall reject the null hypothesis.

Step 6: State conclusion in words

At the $\alpha=0.01$ level of significance, there exists enough evidence to conclude that there is a difference in the mean times to complete the maze based on door color (i.e., there is an effect due to door color).
6. Since we rejected the null hypothesis (we found differences in the means), we should perform a Tukey-Kramer (Tukey's W) multiple comparison analysis to determine which means are similar and which means are different. Here is how such an analysis might appear.

Multiple Comparisons						
Dependent Variable: Maze Time Tukey HSD						
(1) Door Color	(J) Door Color	Mean Difference (1-J)	Std. Error	Sig.	99\% Confidence Interval	
					Lower Bound	Upper Bound
Red	Green	-11.4000**	2.3777	. 0012	-19.8836	-2.9164
	Black	2.8000	2.3777	4879	-5.6836	11.2836
Green	Red	11.4000*	2.3777	. 0012	2.9164	19.8836
	Black	14.2000*	2.3777	. 0002	5.7164	22.6836
Black	Red	-2.8000	2.3777	4879	-11.2836	5.6836
	Green	-14.2000**	2.3777	. 0002	-22.6836	-5.7164

Different (interval does not contain zero) Similar (interval contains zero)
Different (interval does not contain zero)

Thus, we are 99% confident that mazes with green doors seem to take longer on average to complete than do mazes with red or black doors (which have similar population mean times to completion).

Maze Time			
Tukey HSD ${ }^{\text {a }}$			
Door Color	N	Subset for alpha= 01	
		1	2
Black	5	8.0000	
Rod	5	10.8000	
Green	5		22.2000
Sig.		. 4879	1.0000
Means for gr a. Uses	in hom nic Me	eneous sub Sample Siz	$\begin{aligned} & \text { ts are dis } \\ & =5.000 \text {. } \end{aligned}$

This table corresponds to our diagram. Note that the black and red sample means ($8.0000 \& 10.8000$) are grouped together (separately from the differing green sample mean (22.2000)). This shows that we are 99% confident that the black and red population means are similar, yet both differ from the green population mean (which agrees with the conclusion based on the simultaneous confidence intervals).

[^0]: Means for groups in homogeneous subsets are displayed
 a. Uses Harmonic Mean Sample Size $=5.000$.

