Three sets of five mice were randomly selected to be placed in a standard maze but with different color doors. The response is the time required to complete the maze as seen below. Perform the appropriate analysis to test if there is an effect due to door color. (Use $\alpha = 0.01$)

Color	Time							
Red	9	11	10	9	15			
Green	20	21	23	17	30			
Black	6	5	8	14	7			

1. Enter the group number (1 for Red, 2 for Green, 3 for Black) into one variable and the corresponding time values into another variable (*see upper-right figure, below*). Be sure to code your variables appropriately. Now it is time to check the normality assumption. Select "Split File" from the "Data" menu so that we can tell SPSS that we want separate Q–Q Plots for each group (*see upper-right figure, below*). Select "Organize output by groups" and enter "color" as the variable that groups are based upon (*see lower-left figure, below*). Now create Normal Q–Q Plots to assess the normality of each group (*see separate handout on Normal Q–Q Plots*). Once you've created your Q–Q Plots and determined that your groups are approximately normally distributed, select "Split File" from the "Data" menu and then select "Analyze all cases, do not create groups" in order to return SPSS to its normal data analysis mode (*see lower-right figure, below*).

	color	time
1	Red	9
2	Red	11
3	Red	10
4	Red	9
5	Red	15
6	Green	20
7	Green	21
8	Green	23
9	Green	17
10	Green	30
11	Black	6
12	Black	5
13	Black	8
14	Black	14
15	Black	7
40		

2. Select Analyze \rightarrow Compare Means \rightarrow One-Way ANOVA... (see figure, below).

	Analyze	Graphs	Utilities	Add	l-ons	Window	He	elp		
	Repor Descri Tables	ts iptive Stat ;	istics)))		0	•			
	Compa Gener Gener Mixed Correl Regre Loglino Data F Scale Nonpa Time S Surviv Multipl Missin Qualit	are Means al Linear N alized Line Models late ssion ear fy Reduction arametric 1 series ral le Respon: g Value Ar y Control Urve	Aodel Par Models Fests se halysis			ans e-Sample ependen ed-Samp e-Way A	: T T(est mples T Test.	T Test.	
ľ				_						

3. Select "Maze Time" as the dependent test variable, select "Door Color" as the grouping factor, and click "Post Hoc...". Select the "Tukey" procedure, enter 0.01 for the significance level (99% CI corresponds to a 1% (0.01) significance level) to obtain the 99% Tukey-Kramer multiple comparison confidence intervals and grouping diagram, and click "Continue". Click the "Options..." button and select "Homogeneity-of-Variance" (Levene's Test checks the assumption of equal variances). Click "Continue" to close the options and then click "OK" (see the 3 figures, below).

	One-Way ANOVA: Post Hoc Multiple Comparisons
One-Way ANOVA Dependent List: OK Paste Reset Cancel	Equal Variances Assumed LSD S-N-K Waller-Duncan Bonferroni Tukey Type I/Type II Error Ratio: 100 Sidak Tukey's-b Dunnett Scheffe Duncan Control Category: Last R-E-G-W F Hochberg's GT2 Test © 2-sided < Control > Control
Factor: Help Door Color [color] Contrasts Post Hoc Options	Equal Variances Not Assumed Tamhane's T2 Dunnett's T3 Games-Howell Dunnett's C Significance level: .01 Continue Cancel Help

4. Your output should look like this.

Tukey HSD ^a							
			Subset for				
Door Color	N		1	2			
Black	5		8.0000				
Red	5		10.8000				
Green	5			22.2000			
Sig.			.4879	1.0000			
Means for groups in homogeneous subsets are displayed.							

a. Uses Harmonic Mean Sample Size = 5.000.

5. You should use the output information in the following manner to answer the question.

Step 0: Check Assumptions

Since the points of each Q-Q Plot lie close to their respective diagonal lines, we conclude that each of the data groups is from an approximately normally distributed population.

Also, the Levene Statistic *p*-value = Sig. = 0.5384 is greater than α = 0.01 (from Step 2), so we fail to reject the null hypothesis that the variances are all equal. Since the variances appear to be equal (and we have random/independent samples), we may continue with ANOVA.

- **Step 1:** Hypotheses $H_0: \mu_{Red} = \mu_{Green} = \mu_{Black}$ $H_a: at \ least \ one \ \mu_i \ is \ different$ **Step 2:** Significance Level $\alpha = 0.01$
- **<u>Step 3</u>:** Rejection Region Reject the null hypothesis if p-value ≤ 0.01 .

Step 4: Construct the One-way ANOVA Table

Maze Time						
	df	Sum of Squares	Mean Square (•	• Sia.	
Between Groups	2	565.7333	282.868	20.0142	.0002	
Within Groups	12	169.6000	14.1333		• • • • •	Γ.
Total	14	735.3333				

Test of Homogeneity of Variancese 🔹 🖕							
Maze Time							
Levene							
Statistic	df1	df2	🍨 💕 Sig. 🖕 📍				
.6522	2	12	.5384				

From the output, F = 20.0142 with 2 and 12 degrees of freedom. *p*-value = Sig. = 0.0002

Step 5: Conclusion

Since *p*-value = $0.0002 \le 0.01 = \alpha$, we shall reject the null hypothesis.

Step 6: State conclusion in words

At the α = 0.01 level of significance, there exists enough evidence to conclude that there is a difference in the mean times to complete the maze based on door color (i.e., there is an effect due to door color).

6. Since we rejected the null hypothesis (we found differences in the means), we should perform a Tukey-Kramer (Tukey's W) multiple comparison analysis to determine which means are similar and which means are different. Here is how such an analysis might appear.

		Multip	le Compariso	ons			
Dependent Var	iable: Maze Time						
Tukey HSD							
		Mean Difference			99% Confid	ence Interval	
(I) Door Color	(J) Door Color	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Red	Green	-11.4000*	2.3777	.0012	-19.8836	-2.9164	Different (interval does not contain zero)
	Black	2.8000	2.3777	.4879	-5.6836	11.2836	Similar (interval contains zero)
Green	Red	11.4000*	2.3777	.0012	2.9164	19.8836	
	Black	14.2000*	2.3777	.0002	5.7164	22.6836	Different (interval does not contain zero)
Black	Red	-2.8000	2.3777	.4879	-11.2836	5.6836	· · · · · · · · · · · · · · · · · · ·
	Green	-14.2000*	2.3777	.0002	-22.6836	-5.7164	
*. The mean	difference is sign	ificant at the .01	level.				

Thus, we are 99% confident that mazes with green doors seem to take longer on average to complete than do mazes with red or black doors (which have similar population mean times to completion).

This table corresponds to our diagram. Note that the black and red sample means (8.0000 & 10.8000) are grouped together (separately from the differing green sample mean (22.2000)). This shows that we are 99% confident that the black and red population means are similar, yet both differ from the green population mean (which agrees with the conclusion based on the simultaneous confidence intervals).